Luftgekühlt: как работают двигатели с воздушным охлаждением?

Воздушное охлаждение двигателя: принцип работы, преимущества и недостатки

Большинство автолюбителей знакомо лишь с традиционными типами двигателей с жидкостной СОД. А ведь существуют и моторы, где используется воздушное охлаждение двигателя, и это не только ЗАЗ 968. Давайте подробно рассмотрим устройство, принцип действия воздушной системы охлаждения, а также недостатки и преимущества такого решения. Эта информация будет полезна для каждого автолюбителя.

Назначение

В процессе работы ДВС температуры в камере сгорания могут достигать 2000 градусов. Если не будет надежной системы охлаждения, повысится расход масла и горючего. Перегрев приведет к быстрому износу и поломке двигателя.

Если мотор не будет достаточно прогреваться, это также будет на нем негативно сказываться. Если наблюдается переохлаждение, это грозит снижением мощности, интенсивным износу, повышенным расходом горючего.

Обратите внимание

Более того, в большинстве современных автомобилей, кроме основных задач, данная система выполняет и второстепенные функции. Первым делом это обеспечение работы отопителя. Также система призвана охлаждать не только сам двигатель, но и масло, жидкость в автоматической коробке передач. Иногда она действует и на дроссельный узел вместе с впускным коллектором.

В современной системе (будь то жидкостное или воздушное охлаждение двигателя) рассеивается до 35 процентов тепла, произведенного в результате горения топливо-воздушной смеси.

Устройство и принцип действия

В воздушной системе самым главным является воздушный поток. При помощи воздуха тепло отводится от камер сгорания, ГБЦ, масляных радиаторов.

Система представляет собой вентилятор, охладительные ребра в цилиндрах и на ГБЦ. Также в устройстве имеется съемный кожух, дефлекторы и решение для контроля за работой системы.

Вентилятор системы охлаждения двигателя оснащен сеткой для защиты лопастей от попадания посторонних предметов.

Дополнительные ребра позволяют увеличить площадь поверхности, которая контактирует с воздухом. За счет этого воздушное охлаждение двигателя эффективно справляется со своей задачей.

Поток воздуха при работе двигателя в принудительном порядке подается к мотору при помощи лопастей вентилятора – они преимущественно изготовлены из алюминия.

Не нужно объяснять, наверное, почему включается вентилятора охлаждения на холодном двигателе.

Важно

Воздушный поток проходит между ребрами, а затем равномерно разделяется за счет дефлекторов и проходит через все горячие детали двигателя. Таким образом, мотор не нагревается чрезмерно.

Вентилятор подает в систему охлаждения поток воздуха объемом 30 кубических метров в минуту. Этого достаточно для обеспечения нормальной работы мотора с невысокой мощностью и небольшим объемом.

Как устроен вентилятор?

Данный узел является основным в воздушном охлаждении двигателя. Главная деталь – это ротор вентилятора. Чтобы оптимизировать воздушный поток, форму и конструкцию элементов тщательно просчитали инженеры.

Вентилятор представляет собой направляющий диффузор и ротор, оснащенный восемью лопатками, расположенными радиально. Диффузор обладает своими лопастями – они имеют переменное сечение. Главная их задача – создать направленный воздушный поток. Они сделаны неподвижными и равномерно распределены по окружности.

Лопасти на направляющем аппарате призваны менять направление потока воздуха – воздушный поток движется в сторону, которая противоположна вращению ротора. Это повышает давление воздуха и улучшает охлаждение двигателя.

Вентилятор на ранних конструкциях приводился в движение от шкива коленчатого вала с помощью приводного ремня. Направляющее устройство неподвижно и закреплено на блоке двигателя. В более современных четырехтактных двигателях воздушного охлаждения вентилятор приводится в действия за счет электродвигателя. Но таких моделей мало.

Естественная система воздушного охлаждения

Это считается наиболее простым решением. На внешней поверхности блока двигателя установлены специальные ребра, через которые и отдается максимальное количество тепла. Данную систему можно встретить на мотоциклах, различных мопедах и скутерах, поршневых моторах самого разного назначения.

Преимущества

Главное среди всех прочих преимуществ воздушного охлаждения двигателя – это простота конструкции. В системе отсутствует помпа, радиатор, термостат, патрубки и хомуты, трубки подвода и оттока антифриза.

Второе важное преимущество – высокая ремонтопригодность. Например, в тракторных силовых агрегатах имеются индивидуальные цилиндры. Если случилась поломка, то при необходимости можно заменить цилиндр или устранить неисправность. В двигателях с жидкостным охлаждением в случае повреждения какого-либо из цилиндров придется менять блок полностью либо выпрессовывать гильзы.

Совет

Для примера не стоит далеко ходить. Возьмем двигатель Tatra T815. Это мотор с воздушным охлаждением. Головки блока здесь сделаны раздельными. В случае необходимости ремонта не нужно снимать ГБЦ полностью. Даже очень серьезные работы по ремонту можно производить без демонтажа блока двигателя.

Двигатели, оснащенные воздушным охлаждением, более ресурсные. Если в моторе с жидкостной системой повредятся патрубки или ослабятся хомуты, то агрегат эксплуатировать нельзя, так как охлаждающая жидкость уйдет. Также существует опасность выброса горячей жидкости из системы. Всех этих недостатков лишены воздушные системы.

Даже серьезные повреждения охлаждаемой поверхности на блоке двигателя или ГБЦ не смогут помешать дальнейшему использованию мотора. Это очень большой плюс.

Кроме того, двигателю нужно значительно меньше времени для выхода в рабочий режим – нет необходимости в прогреве жидкости, что актуально зимой.

Все это обуславливает значительно меньшие затраты на обслуживание и эксплуатацию подобных силовых агрегатов.

Недостатки

Не обошлось и без недостатков. Прежде чем приобрести авто, оснащенный подобной системой охлаждения, следует знать основные минусы данных решений.

Источник: https://ruud.ru/avtomobili/54492-vozdushnoe-oxlazhdenie-dvigatelya-princip-raboty-preimushhestva-i-nedostatki/

pl

1) люди; народ

kléíne Léúte — простые люди

die júnge Léúte — молодая пара

im Geréde der Léúte sein — быть предметом разговоров [сплетен]

réícher Léúte Kind sein устарев — быть из богатой семьи

etw. (A) nur der Léúte wégen tun* — делать что-л напоказ [на потеху публике, демонстративно]

únter Léúte géhen* (s) — общаться с людьми, бывать среди людей

etw. (A) vor állen Léúten tun* — сделать что-л на глазах у всех [публично]

Hier verkéhrten víéle Léúte von Rang und Námen. — Здесь бывали [Сюда хаживали] многие высокопоставленные и известные люди.

Hört (mal) her, Léúte! разг — Послушайте(-ка), люди!

Was wérden die Léúte von Íhnen dénken? разг — Что о вас подумают люди?

Wir sind geschíédene Léúte. — Между нами всё кончено.

So Léúte wie Sie háben uns geráde noch geféhlt! ирон — Только таких нам и не хватало!

Er weiß mit Léúten úmzugehen. — Он знает как общаться с людьми. / У него есть подход к людям.

Ich will nicht von sólchen Léúten vertréten wérden. неодобр — Я не хочу, чтобы меня [мои интересы] представляли такие [эти] люди.

2) разг люди, работники, сотрудники, коллеги

Die Mánnschaft bestéht aus fähigen Léúten. спорт — Команда состоит из талантливых игроков. / разг Коллектив состоит из талантливых сотрудников.

Der júnge Offizíér hat séíne Léúte in den Kampf geschíckt. — Молодой офицер послал [отправил] в бой своих людей [солдат].

3) уст прислуга, дворовые, челядь; батраки

4) разг члены семьи

Ich blieb bei méínen Léúten. — Я остался (жить) со своей семьёй [у родственников].

in áller Léúte Múnde [in der Léúte Mäuler(n)] sein — быть у всех на устах

únter die Léúte kómmen* (s) разг — стать известным, прославиться

etw. (A) únter die Léúte bríngen* разг — растрезвонить<\p>

aus Kíndern wérden Léúte — как (быстро) дети растут<\p>

hier ist es (ja, doch) nicht wie bei ármen Léúten шутл — здесь же не нищие живут

Источник: https://translate.academic.ru/luftgek%C3%BChlt/de/ru/

Охлаждение электродвигателя переменного и постоянного тока

Для повышения надежности и увеличения сроков эксплуатации электродвигателя в его конструкции предусмотрено наличие эффективной системы охлаждения.

Классификация типов охлаждения электродвигателей

Вентиляция электродвигателя подразделяется на два типа, это:

  1. Замкнутый цикл вентиляции, в паспортных данных электродвигателя обозначен индексом – ICW37.
  2. Разомкнутый цикл – индекс IC31.

В обоих циклах подача воздуха осуществляется в оболочку или камеру электродвигателя, но в замкнутом цикле выброс воздуха наружу не производится, а по воздуховоду поступает в охладитель, после чего, при помощи добавочного вентилятора, охлажденный воздух подается обратно в двигатель.

Замкнутый охлаждающий цикл

Замкнутый цикл можно охарактеризовать тем, что воздух циркулирует в системе воздушного охлаждения. Воздухоохладитель, в котором осуществляется теплообмен между воздухом и охлаждающей водой, устанавливается перед электродвигателем.

В воздушном пространстве перед вентилятором наблюдается воздушное давление равное атмосферному давлению. Температура охлаждающей жидкости на входе в охлаждающее устройство не должна превышать +30о С, а давление воды внутри воздухоохладителя не должно превышать 300 кПа.

Согласно договоренности с изготовителем в воздухоохладителях может применяться морская вода.

Охлаждающий цикл разомкнутого типа

Разомкнутый цикл подразумевает удаление отработанного воздуха при помощи отверстий жалюзи в корпусе статора электродвигателя. Разомкнутый цикл выполняется двух типов:

  1. Исполнение системы с забором воздуха в двигатель из машинного зала и выбросом воздуха наружу из зоны обслуживания.
  2. Забор воздуха из специального помещения (подвала) и выбросом его внутрь машинного зала.

Разомкнутый цикл подразумевает использование для электродвигателей большой мощности — от 6300 до 8000 кВт. Для этого типа охлаждения непременным является наличие воздушных фильтров, предназначенных для получения чистого воздуха.

Обязательно использование фильтров грубой и тонкой очистки, они используются совместно с коробами для отвода отработанного воздуха за границы рабочей зоны, где установлено оборудование. Выброс воздуха при разомкнутом цикле не должен происходить во взрывоопасное помещение.

Для осуществления нормального режима охлаждения, расход воздуха должен быть не менее 3 м3, для этой цели предназначен специально установленный вентилятор.

Конструктивные особенности системы охлаждения асинхронного двигателя

Вентиляция асинхронного электродвигателя осуществляется по замкнутому циклу за счет использования специально для этого предназначенных воздухоотделителей. Вентиляторы располагаются на валу ротора электродвигателя.

Отработанный воздух высокой температуры подвергается охлаждению в трубчатых воздухоохладителях, монтаж которых в двигателях со значением мощности до 2000 кВт выполнен в специальном туннеле фундамента.

Асинхронные машины с более высокой мощностью располагают воздухоохладителями, расположенными в верхней части статорного корпуса.

Система охлаждения синхронного двигателя

Синхронные электродвигатели выполняют, как правило, продуваемого типа. Для продувки используется исключительно чистый воздух, согласно требованиям правил эксплуатации электроустановок. Нормальное исполнение двигателя подразумевает наличие замкнутого или разомкнутого охлаждающего цикла.

В случае с синхронными машинами, охлаждение происходит за счет вентиляторов, установленных на валу двигателя, между наружными щитами и специальными защитными кожухами, прикрывающими контактные кольца. Воздухоохладители представляют собой трубки с проволочным оребрением.

Давление в системе охлаждения контролируется приборами типа СПДМ.

Читайте также:  Как подключить сабвуфер к штатной магнитоле солярис

Система вентиляции машин постоянного тока

Существует два типа охлаждения машин, это:

  1. Естественная вентиляция, без применения специальных устройств охлаждения.
  2. Машины с внутренней и наружной самовентиляцией.

Внутренняя самовентиляция заключается в прохождении воздушного потока во внутренней части машины, при наружном охлаждении, вентилятор расположен вне двигателя, он обдувает ребристую поверхность двигателя.

Внутренняя вентиляция подразделяется на нагнетательный или вытяжной тип, это зависит от установки вентилятора относительно к воздушному потоку, задействованному в охлаждении.

Вытяжная вентиляция аксиального или осевого типа, осуществляется за счет создания внутри машины разряженного воздуха. В этом случае воздух из атмосферы нагнетается в машину, а затем выбрасывается наружу.

Осевая или аксиальная нагнетательная вентиляция работает на основе забора вентилятором воздуха, нагнетании его в машину с последующим удалением.

Аксиальная вентиляция осуществляется при помощи вентиляционных каналов, расположенных внутри корпуса, параллельно валу.

При использовании радиальной вентиляционной конструкции, воздушный поток движется по каналам, расположенным перпендикулярно валу.

Недостаток самовентиляции заключается в том, что в следствии уменьшения скорости вращения, падает производительность вентилятора.

Для машин постоянного тока используется независимая вентиляция. Она бывает протяжного и замкнутого вида.

Обратите внимание

Протяжная вентиляция, несмотря на свою эффективность, обладает существенным недостатком, на внутренних поверхностях машины происходит скопление грязи и пыли, что ведет к ухудшению охлаждения и может привести к аварии. Фильтры в этом случае использовать неэффективно, они слишком быстро засоряются и требуют частой замены.

Использовать замкнутый цикл более рационально, загрязнения отсутствуют, кроме воздуха можно использовать водород.

Водородное охлаждение способствует десятикратному снижению вентиляционных потерь, повышается срок службы изоляции, так как отсутствуют окислительные процессы.

Для предупреждения взрыва и скопления гремучих газов, по воздуховодам предварительно пропускают углекислый газ. Заполнение машины постоянного тока осуществляется под давлением выше атмосферного, что не дает воздуху попасть внутрь машины.

Требования к системе вентиляции

Для эффективности системы вентиляции, при необходимости в одновременном применении нескольких электродвигателей, предусматривается использование индивидуальной или групповой системы охлаждения. В том случае, когда первый вариант невозможен, используют систему вентиляции общую для всех электродвигателей.

Необходимо использовать вентиляторы для основного рабочего периода с возможностью применения дополнительного (резервного) вентилятора.

Групповая система охлаждения, при замкнутом цикле, подразумевает дополнительное применение самостоятельной, предварительной продувки всех машин перед пуском, в индивидуальном порядке. Это делается с целью обеспечить эффективный воздухообмен, позволяющий увеличить его стандартное значение в контуре электродвигателя в определенное, заданное время в пять раз.

Система вентиляции в обязательном порядке должна быть оборудована:

  1. Клапанами перекидного или лепесткового типа для отключения вентилятора, находящегося в резерве.
  2. В вентиляционной камере должны быть установлены обратные клапаны, они служат для отключения воздуховода от помещения, в котором находится взрывоопасное оборудование на время остановки вентиляционной системы.
  3. Для электродвигателя продуваемого типа должна быть предусмотрена блокировка вентиляционных систем, не разрешающая запуск двигателя без выполнения предварительной продувки и без создания требуемого давления в вентиляционном контуре электродвигателя.
  4. Должен быть выполнен монтаж шибера, который отключит продуваемый электродвигатель от воздуховодовода на время простоя.
  5. Рекомендуется монтаж воздуховодов вести открыто, выполнять его необходимо из сваренных труб с толщиной минимум 1.6 мм. На протяжении всего воздуховода необходимо использовать минимум фланцевых соединений, использовать фланцы допускается только в области подключения к электродвигателю для его последующего демонтажа.
  6. Скрытые воздуховоды разрешаются только в исключительных случаях, при условии наличия засыпных каналов там, где присоединение к электродвигателю выполняется ниже высоты пола. В этом случае фланцевые соединения необходимо исключить из конструкции.
  7. Выброс воздуха для электродвигателей, расположенных во взрывозащищенном помещении, при разомкнутом цикле охлаждения, извне помещения, выше уровня крыши не менее 1 м.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

Источник: http://podvi.ru/elektrodvigatel/ventilyaciya-elektrodvigatelya-peremennogo-i-postoyannogo-toka.html

Какое охлаждение лучше: жидкостное или воздушное?

Основная масса современных водителей понятия не имеет что такое воздушное охлаждение. Некоторая часть населения, сопоставляет такой вид вывода лишней температуры с мотоциклами, которые, в большинстве своем, тоже уже охлаждаются различными тосолами и антифризами.

Некоторые еще помнят «Запорожцы», Фольксвагены Жуки, середины прошлого века, и некоторые модели Порше. И только малая доля водителей понимает, что значит ездить на машине с мотором охлаждаемым воздухом, какие это дает преимущества перед жидкостным и какие имеет недостатки.

Описывать систему жидкостного охлаждения двигателя я не буду, итак, все сталкиваются с ней каждый день. А вот что такое воздушное охлаждение и с чем его едят, попробуем разобрать по подробнее.

Воздушное охлаждение ДВС

Как ясно из названия, двигатель охлаждается воздухом. Вентилятор затягивает воздух в отводящие контуры, которые опоясывают все нагреваемые детали и охлаждают мотор. Все просто и ясно. Чаще всего можно встретить такие системы на мотоциклах.

Ярким примером служат все мотоциклы производимые в СССР (про современную Россию говорить не приходится, ибо мотоциклами тут и не пахнет, а если пахнет, то китайским ширпотребом).

Если присмотреться к ним внимательно, то можно обнаружить, что радиатора нет, расширительного бочка нет, вентилятор и трубопровод тоже отсутствует, зато есть блоки цилиндров с ребристыми корпусами.

В автомобилях устройство почти такое же, только отличается тем, что мотор охлаждается принудительно, с помощью вентилятора, засасывающего воздух, и специального кожуха, опоясывающего весь мотор. Это из-за того, что мотор автомобиля расположен внутри, а мотоцикла на свежем воздухе.

Случилось так, что подобные двигатели стали ни кому не нужны. Почему? Вселенский заговор, конструктивная особенность, спрос среди населения или что-либо другое, в общем, ни кто из простых смертных не знает. Однако, сделали это напрасно, ведь с точки зрения практичности, надежности и экономической целесообразности для семейного бюджета, такие моторы вполне могут дать фору жидкостным.

В тот период жидкостные системы охлаждения называю водяными, так как антифризы не были распространены и все заливали в радиатор воду. В воздушный контур заливать ни чего не надо было и это являлось одним огромным плюсом таких двигателей. Рассмотрим ближе преимущества и недостатки таких ДВС.

Достоинства мотора с воздушным охлаждением

Преимуществ было много и одним из них было — надежность. Надежность узлов и агрегатов определяется сроком их службы, ремонтопригодностью и стоимостью запасных частей. По этим трем факторам ДВС с воздушным охлаждением опережал своего водяного собрата.

Туда же добавлялся фактор количества деталей в узле. Чем меньше деталей, тем меньшему их числу придется ломаться.

Особенно, если учесть, что в системе водяного охлаждения выходят из строя сопутствующие агрегаты, такие как термостат, радиатор, патрубки и шланги, которые в принципе отсутствуют в системах воздушного охлаждения, то это уже говорит о многом.

Из-за малого количества деталей, он был проще в эксплуатации и дешевле в ремонте. Легче починить одну деталь, чем десяток. Как гласит статистика авторемонтов, то 20% поломок, связанных с автомобилем приходится на систему охлаждения.

Недостатки

Недостатков тоже хватало и кажутся вполне разумными, если не учитывать тот факт, что они не вполне объективными. Первый недостаток — шумность. Такое присутствует и отказываться от этого ни кто не будет.

Происходит из-за того, что рабочая зона цилиндров не прикрыта жидкостными контурами, как в водяных моторах. Из-за этого он шумит сильнее, плюсом служит большой вентилятор, который работает постоянно, а не в момент срабатывания температурного датчика как в современных двигателях.

Далее пойдут недостатки, которые не могут быть объективными, так как были выявлены владельцами «Запорожцев».

Мотор перегревается — неправда. Температура охлаждающей жидкости намного выше, чем температура воздуха за бортом и поэтому двигатель остывает быстрее.

Мотор плохо нагревался зимой и машина долго была холодной — тоже фантазия. Ввиду того, что мотор не опоясывался контуром холодной жидкости, то после первого пуска мотор разогревался быстрее, так как не было дополнительных охлаждающих элементов.

Двигатель «запорожца» был неплохим, сгубило его недостаточное сервисное обслуживание. Как его ремонтировать никто толком не знал, заправляли его некачественным топливом, специализированных сервисов не было и это не мудрено, так как машина не задействовалась в структурах скорой помощи, милиции или такси. Поэтому и дела до нее не было.

А вот и объективные недостатки:

  • Малая мощность;
  • Большой размер агрегата;
  • Плохая звукоизоляция;
  • Неравномерность обдува и частичный перегрев;
  • Чувствительность к качеству ГСМ.

Данные факторы не позволяют судить об авто, как о комфортном, однако, смотря с какой стороны посмотреть.

Двигатель с воздушным охлаждением больше по размеру, чем с водяным. Все так! Если сравнивать чисто двигатели между собой как отдельные агрегаты.

Но стоит добавить сопутствующие элементы, то водяной выходит объемнее, из-за радиатора, проводящих трубок и патрубков, водяного насоса, термостата и расширительного бочка (которые еще и часто ломаются).

Неравномерность обдува и частичный перегрев связан с загрязненностью мотора. Хороший слой пыли или грязи препятствуют эффективному отбору тепла с мотора, поэтому необходимо тщательнее следить за чистотой ДВС.

Важно

Вот и выходит, что сам по себе двигатель с воздушным охлаждение не так уж и плох и прикрыли его развитие по непонятным причинам. Ибо инженеры Порше, практически справились со многими недостатками подобных моторов, так как они производили свои знаменитые спортивные купе с моторами на воздушном охлаждении аж до 1998 года. А ребята из Porsche знают толк в моторах.

Источник: https://autoburum.com/blog/402-kakoje-ohlazhdenije-luchshe-zhidkostnoje-ili-vozdushnoje

Система охлаждения двигателя внутреннего сгорания –

Работа двигателя внутреннего сгорания (ДВС) приводит к чрезмерному нагреванию всех его деталей и без их охлаждения функционирование главного агрегата транспортного средства невозможно. Эту роль выполняет система охлаждения двигателя, которая также отвечает за обогревание салона авто.

В турбированных двигателях с ее помощью снижается температура воздуха, нагоняемого в цилиндры, а в АКПП эта система охлаждает жидкость, которая применяется для ее работы.

Отдельные модели машин оснащают масляным радиатором, который принимает участие в терморегуляции масла, использующегося для смазки двигателя.

Система охлаждения ДВС бывает воздушная и жидкостная

Обе эти системы не идеальны и имеют как достоинства, так и недостатки.

Преимущества воздушной системы охлаждения:

  • небольшой вес двигателя;
  • простота устройства и его обслуживания;
  • невысокая требовательность к температурным изменениям.

Недостатки воздушной системы охлаждения:

  • большой шум от работы двигателя;
  • перегрев отдельных деталей мотора;
  • невозможность выстроить цилиндры блоками;
  • затруднительность в использовании выделяемого тепла для обогревания салона авто.

В современных условиях автопроизводители предпочитают оснащать свои машины преимущественно двигателями с системами жидкостного охлаждения. Воздушные конструкции, охлаждающие узлы мотора, встречаются очень редко.

Преимущества жидкостной системы охлаждения:

  • не такой шумный двигатель по сравнению с воздушной системой;
  • высокая скорость начала работы при запуске мотора;
  • равномерное охлаждение всех деталей силового механизма;
  • меньшая предрасположенность к детонации.
Читайте также:  Замена лампочки ближнего света ауди а6 с4

Недостатки жидкостной системы охлаждения:

  • дорогое техническое обслуживание и ремонт;
  • возможное вытекание жидкости;
  • частые переохлаждения мотора;
  • замерзание системы в периоды морозов.

Структура жидкостной системы охлаждения двигателя

К основным составляющим жидкостной системы охлаждения ДВС относятся следующие детали:

  • «водяная рубашка» двигателя
  • вентилятор;
  • радиатор;
  • помпа (центробежный насос);
  • термостат;
  • бачок расширительный;
  • теплообменник отопителя;
  • составляющие элементы управления.

Водяная рубашка двигателя – это плоскость между стенками агрегата в тех местах, которым требуется охлаждение.

Радиатор системы охлаждения – это механизм, который предназначен для отдачи созданного работой двигателя тепла. Узел представляет собой конструкцию из многих изогнутых алюминиевых трубой, которые также имеют дополнительные ребра, способствующие большей теплоотдаче.

Вентилятор используется для ускорения циркуляции воздуха, обволакивающего радиатор. Вентилятор включается при граничном нагревании охлаждающей жидкости.

Центробежный насос (другими словами – помпа) обеспечивает беспрерывное движение жидкости во время работы двигателя. Привод для помпы может быть разным: ременной, например, или шестеренный. На авто с турбированными двигателями часто устанавливают добавочные насосы, которые способствуют циркуляции жидкости и запускаются из блока управления.

Термостат – это устройство в виде биметаллического (или электронного) клапана, расположенного между входным отверстием радиатора и «рубашкой охлаждения». Этот прибор обеспечивает нужную температуру жидкости, служащей для охлаждения ДВС.

Когда мотор остывший, термостат закрыт, поэтому принудительная циркуляция остужающей жидкости проходит внутри двигателя, не затрагивая радиатор. В момент нагревания жидкости до граничной температуры клапан открывается.

В этот момент система начинает функционировать во всю свою мощь.

Расширительный бачок используется для заливания охлаждающей жидкости. Этот узел компенсирует также изменение количества жидкости в системе во время изменения температуры.

Совет

Радиатор отопителя – механизм, предназначенный для подогрева воздуха в салоне транспортного средства. Его рабочая жидкость набирается непосредственно возле входа в «рубашку» мотора.

Главным элементом координации системы охлаждения ДВС есть датчик (температурный), электронный блок управления, а также исполнительные устройства.

Особенность работы системы охлаждения двигателя

Система охлаждения работает под контролем системы управления силовым агрегатом. Насос запускает циркуляцию жидкости в «рубашке охлаждения» двигателя. Учитывая степень нагрева, жидкость перемещается либо по малому, либо по большому кругу.

Чтобы двигатель быстрее прогрелся после запуска, жидкость циркулирует по кругу малому. После ее нагревания термостат открывается, предоставляя жидкости возможность циркулировать через радиатор, на выходе с которого на жидкость воздействует поток воздуха (встречного или от работающего вентилятора), который ее охлаждает.

Далее остывшая жидкость поступает опять в «рубашку охлаждения» и весь процесс повторяется снова и снова.

В моторах с турбонаддувом может использоваться двухконтурная система охлаждения. Особенностью ее работы есть то, что один контур контролирует охлаждение нагнетаемого воздуха, а второй – охлаждение двигателя.

Источник: http://qvarto.ru/sistema-oxlazhdeniya-dvigatelya-vnutrennego-sgoraniya/

Как работает двигатель самолета

Впервые самолет с турбореактивным двигателем (ТРД) поднялся в воздух в 1939 году. С тех пор устройство двигателей самолетов совершенствовалось, появились различные виды, но принцип работы у всех них примерно одинаковый. Чтобы понять, почему воздушное судно, имеющий столь большую массу, так легко поднимается в воздух, следует узнать, как работает двигатель самолета.

ТРД приводит в движение воздушное судно за счет реактивной тяги. В свою очередь, реактивная тяга является силой отдачи струи газа, которая вылетает из сопла. То есть получается, что турбореактивная установка толкает самолет и всех находящихся в салоне людей с помощью газовой струи.

Реактивная струя, вылетая из сопла, отталкивается от воздуха и таким образом, приводит в движение воздушное судно.

Устройство турбовентиляторного двигателя

Конструкция

Устройство двигателя самолета достаточно сложное. Рабочая температура в таких установках достигает 1000 и более градусов. Соответственно, все детали, из которых двигатель состоит, изготавливаются из устойчивых к воздействию высоких температур и возгоранию материалов. Из-за сложности устройства существует целая область науки о ТРД.

ТРД состоит из нескольких основных элементов:

  • вентилятор;
  • компрессор;
  • камера сгорания;
  • турбина;
  • сопло.

Перед турбиной установлен вентилятор. С его помощью воздух затягивается в установку извне. В таких установках используются вентиляторы с большим количеством лопастей определенной формы. Размер и форма лопастей обеспечивают максимально эффективную и быструю подачу воздуха в турбину.

Изготавливаются они из титана. Помимо основной функции (затягивания воздуха), вентилятор решает еще одну важную задачу: с его помощью осуществляется прокачка воздуха между элементами ТРД и его оболочкой.

За счет такой прокачки обеспечивается охлаждение системы и предотвращается разрушение камеры сгорания.

Возле вентилятора расположен компрессор высокой мощности. С его помощью воздух поступает в камеру сгорания под высоким давлением. В камере происходит смешивание воздуха с топливом. Образующаяся смесь поджигается.

После возгорания происходит нагрев смеси и всех расположенных рядом элементов установки. Камера сгорания чаще всего изготавливается из керамики. Это объясняется тем, что температура внутри камеры достигает 2000 градусов и более.

А керамика характеризуется устойчивостью к воздействию высоких температур. После возгорания смесь поступает в турбину.

Вид самолетного двигателя снаружи

Турбина представляет собой устройство, состоящее из большого количества лопаток. На лопатки оказывает давление поток смеси, приводя тем самым турбину в движение.

Турбина вследствие такого вращения заставляет вращаться вал, на котором установлен вентилятор.

Получается замкнутая система, которая для функционирования двигателя требует только подачи воздуха и наличия топлива.

Источник: http://samoleting.ru/raznoe/princip-raboty-dvigatelya-samoleta.html

Преимущества воздушного охлаждения

28/11/2014

Продолжается совершенствование двигателей колесной техники

Колесные тракторы и самоходные шасси под брендом АГРОМАШ производства предприятий Концерна «Тракторные заводы» традиционно оснащаются двигателями воздушного охлаждения мощностью от 25 до 90 л.с.Существуют также стационарные модификации двигателей мощностью от 20 до 40 л.с.

, которые используются в гражданских и оборонной отраслях в составе электро- и сварочных агрегатов, воздушных компрессоров, водяных насосов, автобетоновозов и т.д.

Все эти двигатели имеют между собой очень высокую степень унификации (более 90%), и отличаются только количеством цилиндров (2, 3 и 4), а также наличием (или отсутствием) турбонаддува.

В чем преимущества двигателей воздушного охлаждения в сравнении с двигателями жидкостного охлаждения (ДЖО)?

  1. Двигатели воздушного охлаждения отличаются более простой конструкцией: у них нет водяного насоса, радиатора (изготавливаемого, к тому же, из дорогостоящих цветных металлов), термостата, патрубков, хомутов, дополнительных труб подвода и отвода жидкости.
  2. Они обладают высокой ремонтопригодностью: наличие индивидуальных цилиндров позволяет, в случае необходимости, производить замену отдельных цилиндров, что делает возможным ремонт даже в полевых условиях. В ДЖО в этом случае необходима либо замена блока цилиндров, либо выпрессовка гильз цилиндров с последующей их заменой.
  3. Их отличает высокая живучесть. Повреждение радиатора и патрубков в ДЖО, а также простое ослабление хомутов на водяных патрубках обуславливает невозможность эксплуатации в связи с утечкой жидкости. Это особенно актуально в сельской местности и отдаленных районах, где далеко не всегда можно найти антифризы, а также при эксплуатации в условиях экстремальных температур. При работе в условиях жаркого климата вызывает опасность процесс выкипания охлаждающей жидкости, затруднительна эксплуатация также и в районах с повышенной запыленностью – при уборке, например, хлопка, или в условиях пустынь и степей, поскольку в этом случае радиаторы системы жидкостного охлаждения быстро забиваются.

Всех этих недостатков лишены двигатели воздушного охлаждения. Более того, даже повреждение оребрения цилиндров и головок цилиндров не помешает дальнейшей эксплуатации двигателей.

В боевых условиях важным преимуществом двигателей воздушного охлаждения является также значительно меньшее время вывода двигателя на рабочий режим, поскольку не требуется прогрева жидкости, что особенно ярко проявляется в зимнее время.

Вышеперечисленные преимущества обусловливают и меньшие эксплуатационные затраты
В Концерне «Тракторные заводы» постоянно ведутся работы по совершенствованию двигателей воздушного охлаждения в направлении как обеспечения современных международных требований к экологической чистоте, так и повышению их агрегатной мощности:

  • совершенствование системы газообмена за счет снижения сопротивления впускного и выпускного трактов, переход на трех- и четырехклапанные головки цилиндров, согласование вихревого движения заряда с характеристиками топливоподачи и геометрией камеры сгорания;
  • оптимизация характеристик системы турбонаддува, в том числе за счет применения охлаждения наддувочного воздуха;
  • модернизация системы топливоподачи за счет управления углом опережения впрыскивания топлива, повышения интенсивности подачи и максимальных значений впрыскивания топлива, а также увеличения количества сопловых отверстий распылителя;
  • переход на камеру сгорания открытого типа;
  • применение регулируемой по нагрузке и скоростному режиму рециркуляции отработавших газов (ОГ) с обеспечением охлаждения перепускаемых газов.

Так, в 2008 году на макетном образце трехцилиндрового двигателя с турбонаддувом были реализованы европейские экологические нормы уровня Stage-3A за счет применения охлаждения надувочного воздуха.

А в 2013 году переход с двухклапанных головок цилиндров (ГЦ) на трехклапанные позволил разнести по разным сторонам ГЦ впускные и выпускной канал, снизив, тем самым, нежелательный подогрев впускного воздуха и, соответственно, тепловую напряженность двигателя (рис.1).

Последнее мероприятие обеспечило возможность отказаться от наклонного расположения форсунки (35о к вертикали), перейдя к вертикальному, и применить многосопловые распылители (с 6-ю отверстиями вместо традиционных 3-х), позволившие повысить степень равномерности распределения топлива по камере сгорания (рис.2). Результатом стало значительное улучшение топливной экономичности двигателей (на 6 – 8%) и увеличение агрегатной мощности (на 15 – 25%).

Сравнительные характеристики дизелей с двух- и трехклапанными головками цилиндров

Обратите внимание

Кроме того, в концерне ведутся работы по применению альтернативных топлив: водо-топливных эмульсий, различных газов. В результате появились газовые тракторы производства ООО «Завод инновационных продуктов», работающие на компримированном (т.е. сжатом) природном газе (КПГ).

Однотопливные газовые двигатели созданы на базе дизелей, и, сохранив все преимущества воздушного охлаждения, добавили ряд предпочтений применения самого экологически чистого углеводородного топлива – метана: увеличение ресурса двигателей в 1,5 – 2,0 раза, уменьшение эксплуатационных затрат на топливо в 2,5 – 3,0 раза, снижение загрязнения окружающей среды за счет полного отсутствия сажи и оксидов серы в ОГ (что характерно для дизелей), уменьшения шумности рабочего процесса.

Дальнейшее совершенствование двигателей воздушного охлаждения планируется проводить в направления развития бортовой диагностики, что будет реализовано за счет применения встроенных датчиков:

  • расхода топлива и воздуха;
  • температуры масла, воздуха, ОГ, топлива, деталей;
  • давления воздушного заряда в системе впуска и ОГ в системе выпуска, в системе смазки;
  • скоростного режима.

Основная цель проводимых в этом направлении работ по совершенствованию двигателей воздушного охлаждения – это добиться простоты конструкции, надежности в эксплуатации и экологической безопасности.

Алексей Кульчицкий, д.т.н.,

главный специалист ООО «Завод инновационных продуктов»

Источник: http://www.agritimes.ru/articles/1712/preimushestva-vozdushnogo-ohlazhdeniya

“Водянка” VS “воздушка”?Что лучше?

Вопрос,конечно,не злободневный,но некоторых всё таки интересует.Так что же лучше?Скажу сразу:однозначно сказать нельзя.Понятно,что вроде бы как “водянка” будет по-веселее,но и “воздушка” при нормальной эксплуатации тоже ничего.Для начала в двух словах расскажу для чего ставят жидкостное охлаждение и почему к этому пришли конструкторы.

Читайте также:  Новая хонда аккорд 2018 тест драйв

Единственная и самая фундаментальная цель жидкостного охлаждения-увеличить площадь теплоотдачи с мотора,поскольку по отношению к жидкостному охлаждению,воздушное ограничено площадью рёбер охлаждения.Разложу всё по полкам,а что уже лучше,Вы будете решать сами.Начну с более распространённого варианта:воздушного охлаждения.

Отличается относительной простотой конструкции по отношению к его оппоненту.Менее прихотливо к обслуживанию(если вообще прихотливо) и не просит следить за собой очень уж пристально.

Скажу,что,например,двигатель естественного воздушного охлаждения выигрывает у “водянки” в скорости раскрута,поскольку нифига кроме коленвала ему крутить не надо,а у “водянки” ещё есть помпа,которую тоже нужно крутить.Да,конечно есть ещё электропомпы,но они тоже способный создать лишнюю нагрузку в виде электромагнитной нагрузки в генераторе.

Ну да ладно.К плюсам так же можно приписать тот факт,что никогда ничего нигде не будет течь,тут нету километров шлангов,глючащих датчиков температуры и т.д.

Понятное дело,что минусов тоже хватает.Ничто так не граеется,как “воздушка” при вваливании фитилей ей ездоком.Систематический перегрев сводит на нет любой ресурс,”усаживает” цементационный слой,каким бы козырным он ни был.

Не редко случается,что температура мотора при “прохватах с пристрастием” заваливает за 200○С.При такой температуре ни какое масло уже ничего не смазывает.При фиговом к ней отношении,”воздушка” чаще звенит,гремит,стучит.

Важно

Максимальный ресурс,который довелось мне видеть лично:64000 км,но о способности заводиться с эл.стартера и речи не шло.

Разбирая мёртвую ЦПГ нередко можно наблюдать синий и съеденный поршневой палец.

С жидкостным охлаждением тоже хватает приколов и соотношение минусов и плюсов тут такое же,как и у воздушного охлаждения.

Из плюсов конечно же главным является практически полная невозможность теплового прихвата.При наличии добротного,не забитого радиатора на полтинишном моторе можно шпарить хоть 200 километров без остановки с полностью открытой ручкой газа и с ним абсолютно ничего не случится.

Я такое наблюдал лично.Дело в том,что часто температура такого мотора выше ста градусов не поднимается,а при ста градусах с железом ничего случиться не может.

Ресурс такого мотора нередко превышает ресурс “воздушника” в два и более раз,но при этом всё равно обязывает:следить за состоянием помпы,наличием и качеством охлаждающей жидкости,работоспособностью датчиков температуры и целостностью всей магистрали.

В общем данный тип охлаждения не для криворуких и не для колхозников-раздолбаев,которые в скорости начинают лить туда всё,что угодно,но только не тосол и не антифриз.

Делайте выводы и выбирайте…

Источник: https://pitstopsaki.com/stati/vodyanka-vs-vozdushka-chto-luchshe/

Воздушная система охлаждения двигателя

Воздушная система охлаждения двигателя автомобильных и тракторных моторов состоит из ряда деталей, которые регулируют тепловое состояние силового агрегата.

Схема воздушной системы охлаждения двигателя состоит из подкапотного пространства, которое закрыто кузовными панелями; аксиальный или центробежный вентилятор, приводимый в движение от коленвала мотора; панели рубашки охлаждения, а также органы, которые управляют расходом воздуха в виде управляемых заслонок, дросселирующих поток воздуха, или муфты регулирования частоты вращения вентилятора. В потоке воздуха находится масляный радиатор. Для контроля теплового состояния мотора служат датчик температуры и специальный прибор в кабине машины.

Виды воздушных систем охлаждения

Простейшая воздушная система охлаждения двигателя – напор встречного воздуха используется для охлаждения мотоциклетных моторов. Равномерность охлаждения двигателя достигается установкой направляющих пластин.

В наиболее популярных системах с вентилятором используют следующие схемы подачи охлаждающего воздуха: с нагнетающим и отсасывающим вентилятором.

Первый работает в потоке холодного и более плотного воздуха, имеет большую подачу и меньшие энергетические затраты. Менее экономичный второй вид, который обеспечивает равномерное охлаждение цилиндров без сложных направляющих дефлекторов.

Преимущества воздушной системы охлаждения двигателя:

  1. Простота эксплуатации из-за отсутствия жидкости;
  2. Меньшая масса мотора по сравнению с массой двигателя с жидкостным охлаждением;
  3. Низкая чувствительность к колебаниям температуры, отлично подходит для эксплуатации машины в районах с жарким или холодным климатом.

Недостатки воздушной системы охлаждения двигателя:

  1. Ухудшение наполнения цилиндра, что приводит к одинаковым частотам вращения коленвала и меньшая мощность, чем у двигателя с жидкостным охлаждением;
  2. Повышенный шум;
  3. Большая тепловая напряженность некоторых элементов.

Систему жидкостного охлаждения рационально использовать в форсированных моторах, а в моторах с небольшим рабочим объемом лучше использовать систему воздушного охлаждения, т.е.

с рабочим объемом цилиндра до 1 л независимо от степени форсировки и в моторах не большой мощности с небольшой литровой мощностью.

Нашли ошибку? Выделите текст мышью и нажмите Ctrl+EnterСистема охлаждения мотора одна из важнейших элементов в моторах внутреннего сгорания, поэтому необходимо знать ее устрВентилятор системы охлажденияНа современной машине установлен один вентиляторДатчик температуры охлаждающей жидкостиВ коллекторе рядом с корпусом термостата находитсяДатчик температуры двигателяО том, что не работаетЧто такое электронный датчик температуры двигателя и зачем он нужен?Электронный датчик температуры двигателя измеряет темСистема управления двигателемСистем управления двигателем существует несколько типов, и все они различаются между собой, но в любой из нихСистема охлаждения двигателяДатчик массового расхода воПоказать еще

Источник: http://vsepoedem.com/story/vozdushnaya-sistema-okhlazhdeniya-dvigatelya

Предварительное охлаждение воздушного потока в реактивных двигателях

В рамках учебного процесса мне пришлось реферат писать, а так как выбор тем был свободен, выбрал что то “нового и интересного”, считая таким амбициозный концепт Skylon британской фирмы Reaction Engines.

В процессе поиска материала, наткнулся на несколько статей в англоязычном сегмнете википедии, косвенно затрагивающие предмет (а так как рефератов мне надо несколько, по нескольким дисциплинам, то это тоже благо есть), и на отсутствие оной информации в рускоязычном сегменте интернета.

После недолгих моральных терзаний принял решение о переводе с английского на русский (правда для написания реферата мне придется еще и на украинский переводить, ничего не поделаешь), а так как просто сдать реферат – это скучно, он канет в нутро бюрократического механизма, и моя деятельность останется бесполезной, решил опубликовать здесь.

Не одним бумагомаранием стало быть.

Первой в фокус внимания попала статья Precooled jet engine (исходный текст по адресу http://en.wikipedia.org/wiki/Precooled_jet_engine), сей термин мной был переведен как “Реактивный двигатель предварительного охлаждения”.

Ниже следуют мои попытки изложить на русском, несколько отступая от текста.

Реактивный двигатель с предварительным охлаждением (Precooled jet engine) – так называется концепт реактивного двигателя, рассчитанного на достижение высоких скоростей, с помощью криогенного теплообменника непосредственно после воздухозаборника, охлаждающего поступающий в двигатель воздух с помощью криогенного топлива. После получения тепла и испарения в теплообменнике, топливо (обычно водород) сжигается в камере сгорания. Такие двигатели еще ни разу не использовались в полете, но по прогнозам они способны дать более высокую тягу и эффективность, чем ныне существующие, на скоростях до М = 5.5. Реактивные двигатели с предварительным охлаждением были впервые описаны Робертом Кармайклом (Robert P. Carmichael) в 1955.

Рис.1 Общая схема работы двигателя

Совет

В отличии от Двигателей жидкостно-воздушного цикла (Liquid Air Cycle Engines – LACE, о них когда нибудь потом), эти двигатели всего лишь охлаждают, а не сжижают воздух, что исключает необходимость в воздушном кондесаторе-холодильнике.Возможное поле применения РД с предварительным охлаждением – часть силовой установки аэрокосмических систем или сверхдальних высокоскоростных летательных аппаратов.

Преимущества предварительного охлаждения

Одно из главных преимуществ предварительного охлаждения служит снижение температуры на последней ступени компрессора при заданной степени сжатия, что позволит отодвинуть достижение предельной температуры для последней ступени компрессора, до более высоких скоростей.

Другое преимущество состоит в том, что компрессор и воздуховод после вохдухозаборника подвергается более низким и постоянным температурам, что позволяет их изготовить с легких сплавов. Это значительно снижает вес двигателя, а следовательно повышает тяговоруженность.

Топливом, предлагаемым для РД с предварительным охлаждением, обычно служит водород, поскольку водород жидкий при крайне низких температура, и в широком диапазоне температур имеет очень высокую общую теплоемкость, включая скрытую теплоту испарения, которая выше чем у воды.

Однако, низкая плотность жидкого водорода оказывает негативное влияние на остальную часть летательного аппарата, он имеет очень большие габариты, правда нагрузка на шасси и крыло остается сравнительно низкой.Другая проблема кроется в том, что количество водорода, требуемое для охлаждения воздуха весьма высокое, значительно больше, чем может быть сожжено в двигателе.

Двигатель получает избыток водорода, который должен быть использован. Одним из выходов видится второй, прямоточный контур, в котором будет сжигаться избыток водорода, вокруг центрального ядра, которым служит реактивный двигатель предварительного охлаждения.

История создания реактивных двигателей предварительного охлаждения.

Такие двигатели еще ни разу не использовались в полете.

На нынешнем этапе исследований была изготовлена масштабная модель, которая была разработана в Великобритании, и успешно испытана в нужных условиях.

Так же была решена проблема отклонения конденсировавшейся воды, поскольку на теплообменнике мог образовываться лед, который блокировал бы работу системы.

Рис.2 Общий вид Lockheed CL-400 Suntan

Обратите внимание

Двигатель предварительного охлаждения был впервые предложен как часть американского проекта Suntan (Lockheed CL-400 Suntan – сверхзвуковой разведывательный ЛА на жидком водороде).

В 1955 Роберт Кармайкл разработал несколько циклов работы двигателя, которое могут быть осуществлены с жидким водородным топливом. Вышеописанный был одним из них.

Краткая вспышка интереса к реактивному двигателю предварительного охлаждения имела место в Великобритании, в 1982 году, когда Алан Бонд (Alan Bond) создал подобный LACE концепт двигателя, названный им SATAN.

Правда существенным отличием от этой системы было то, что воздух только охлаждался, а не сжижался, и газы не были отделены друг от друга, что давало значительный прирост общей производительности, за счет сокращения количества водорода используется для охлаждения.

Рис.3 HOTOL в представлении художника

В то же время, Джон Скотт (John Scott) и Боб Паркинсон (Bob Parkinson) в British Aerospace начали некоторые предварительные работы по аэрокосмической системе многоразового использования.

Две команды объединились и создали HOTOL, который использовал разработанный в BAe планер с Ролс-Ройсовской версией двигателя Бонда, известной как RB545.

В 1986 проект получил официальное признания, и было выделено 2 миллиона фунтов стерлингов для исследований, но позже, в 1989 программа была закрыта, когда исследования наткнулись на проблемы, и у правительства закончилось финансирование.

Рис.4 Некоторые изображения двигателя RB545

Конструкторы продолжали разработку за сет своих собственных средств, но RB545 был засекречен и не мог быть использован.

Важно

Вместо нее Алан Бонд предложил новую, более передовую версию, известную как SABRE – Synergistic Air-Breathing Rocket Engine (синергичный воздушно-реактивный ракетный двигатель), предназначенную для нового проекта аэрокосмической системы многоразового использования – Skylon.

Источник: https://thexhs.livejournal.com/5543.html

Ссылка на основную публикацию
Adblock
detector